Detecting Active Attacks in WiFi Network by Semi-supervised Deep Learning1)

نویسندگان

  • Muhamad Erza Aminanto
  • Kwangjo Kim
چکیده

WiFi network usage is increased rapidly these days while the number of attacks in WiFi network are growing as well. Intrusion Detection System (IDS) is one of the popular defense mechanisms that often uses e.g., machine learning algorithms in order to detect both known and unknown attacks in a particular network. We leverage an unsupervised deep learning approach, so called Stacked Auto Encoder (SAE) as feature extraction scheme. Feature extraction by SAE can reduce the complexity of original features of the dataset. While regression layer with softmax activation function is implemented as supervised classification. In this paper, we test our proposed IDS using AWID dataset which is one of comprehensive WiFi network traces from real network. Our experiments show that our proposed IDS can outperform the previous work by Kolias et al. In addition, we provide several suggestions in order to made our proposed IDS reach an optimum result.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Web Attacks with End-to-End Deep Learning

Web applications are popular targets for cyber-attacks because they are network accessible and often contain vulnerabilities. An intrusion detection system monitors web applications and issues alerts when an attack attempt is detected. Existing implementations of intrusion detection systems usually extract features from network packets or string characteristics of input that are manually select...

متن کامل

Active Deep Networks for Semi-Supervised Sentiment Classification

This paper presents a novel semisupervised learning algorithm called Active Deep Networks (ADN), to address the semi-supervised sentiment classification problem with active learning. First, we propose the semi-supervised learning method of ADN. ADN is constructed by Restricted Boltzmann Machines (RBM) with unsupervised learning using labeled data and abundant of unlabeled data. Then the constru...

متن کامل

Detecting Active Bot Networks Based on DNS Traffic Analysis

Abstract—One of the serious threats to cyberspace is the Bot networks or Botnets. Bots are malicious software that acts as a network and allows hackers to remotely manage and control infected computer victims. Given the fact that DNS is one of the most common protocols in the network and is essential for the proper functioning of the network, it is very useful for monitoring, detecting and redu...

متن کامل

Deep Bayesian Active Semi-Supervised Learning

In many applications the process of generating label information is expensive and time consuming. We present a new method that combines active and semi-supervised deep learning to achieve high generalization performance from a deep convolutional neural network with as few known labels as possible. In a setting where a small amount of labeled data as well as a large amount of unlabeled data is a...

متن کامل

SEE: Towards Semi-Supervised End-to-End Scene Text Recognition

Detecting and recognizing text in natural scene images is a challenging, yet not completely solved task. In recent years several new systems that try to solve at least one of the two sub-tasks (text detection and text recognition) have been proposed. In this paper we present SEE, a step towards semi-supervised neural networks for scene text detection and recognition, that can be optimized end-t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016